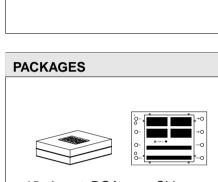
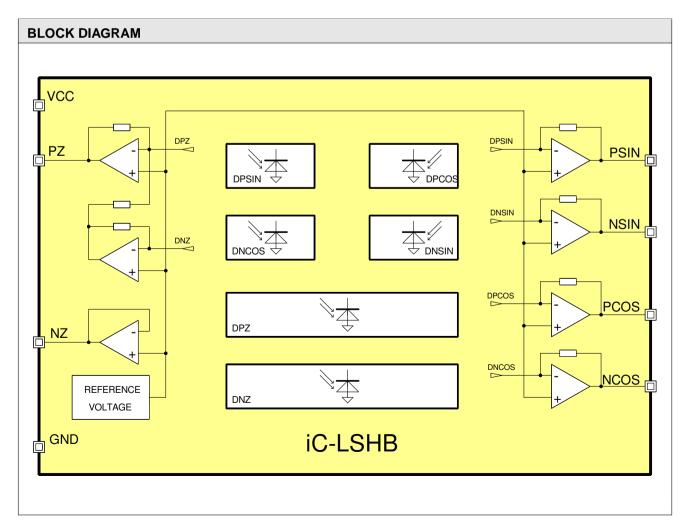
iC-LSHB INCREMENTAL PHOTOSENSOR ARRAY

Incremental rotary encoders


APPLICATIONS

♦ Linear scales

Rev B1, Page 1/8


FEATURES

- Monolithic array of independent photosensors with excellent matching
- Compact photosensor size of 800 µm x 330 µm enabling smaller encoder systems
- Moderate track pitch for reasonable alignment tolerances
- Ultra low dark currents for operation to high temperature
- Low noise amplifiers with high transimpedance of typ. 4 MΩ
- Short-circuit-proof, low impedance voltage outputs for enhanced EMI tolerance
- Space saving 15-pin optoBGA package (RoHS compatible)
- ♦ Low power consumption from single 4.5 V to 5.5 V supply
- ♦ Operational temperature range of -40 to 125 °C
- Available options
 - reticle assembly, code discs
 - customized COB modules

15-pin optoBGA 6.2 mm x 5.2 mm

Chip 2.88 mm x 2.04 mm

iC-LSHB INCREMENTAL PHOTOSENSOR ARRAY

Rev B1, Page 2/8

DESCRIPTION

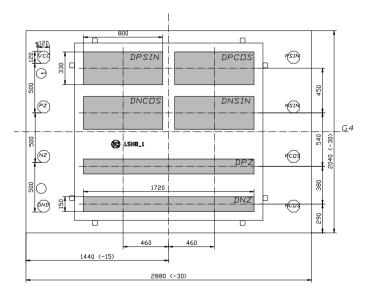
iC-LSHB is an optical sensor IC with 6 integrated photodiodes whose signal currents are converted into output voltages by low-noise transimpedance amplifiers.

The IC is well suited for the operation of interpolation circuits for linear or rotary incremental encoders with an index signal. iC-LSHB thus has a shamrock-style sensor layout of four photodiodes, each with an active area of $800 \,\mu\text{m} \times 330 \,\mu\text{m}$. Both a positive and negative sine signal and a positive and negative cosine signal are generated from a single shared code track. The signal amplifier layout ensures excellent paired channel matching, reducing signal differences to an absolute minimum.

Two separate photodiodes, with active areas of 1720 μ m x 150 μ m apiece, are employed for the differential scanning of the index track and to generate the zero signal.

The spectral sensitivity ranges from visible to near

infrared light, with the maximum sensitivity close to a wavelength of 680 nm.

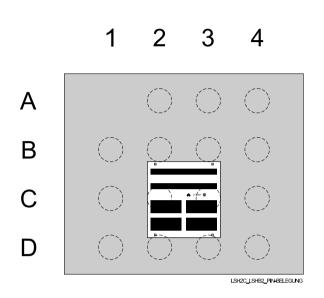

Due to a high transimpedance gain of typically $4 M\Omega$, signal voltages of several hundred millivolts are obtained at low illumination levels. An output signal amplitude of 1 V is typical in low light conditions, for instance when iC-LSHB is illuminated at only 0.2 mW/cm^2 by a 740 nm LED.

A threefold intensity is sufficient when using iC-LSHB for encoder applications with typical disc and mask codes. Therefore, a relatively low LED current is enough to operate the sensor, proving beneficial to the life expectancy of the LED at high operating temperatures.

iC-LSHB is suitable for on-chip or LED-end mounting of the grating (reticle), so that the period count, signal waveform, phase shift and index marker code can be selected with flexibility.

PACKAGES

PAD LAYOUT (2.88 mm x 2.04 mm)


PAD FUNCTIONS No. Name Function

- 1 VCC +4.5..5.5 V Supply Voltage
- 2 PZ Zero Signal (Index)
- 3 NZ Reference Voltage Output
- 4 GND Ground
- 5 NCOS Cosine -
- 6 PCOS Cosine +
- 7 NSIN Sine -
- 8 PSIN Sine +

Notes: All outputs supply analog voltages. Dimension G4 is the reference radius of the chip center.

PIN CONFIGURATION oBGA LSH2C (6.2 mm x 5.2 mm)

PIN FUNCTIONS No. Name Function

A2		
A3		
A4		
B1		
B2		
B3		
B4		
C1 N	1COS	Cosine -
C2 F	PCOS	Cosine +
C3 N	١Z	Reference Voltage Output
C4 (GND	Ground
D1 N	ISIN	Sine -
D2 F	PSIN	Sine +
D3 \	/CC	+4.55.5 V Supply Voltage
	77	Zero Signal (Index)

D4 PZ Zero Signal (Index)

Rev B1, Page 3/8

Rev B1, Page 4/8

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

ltem	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC +	V
					0.3	
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through $1.5 \text{ k}\Omega$		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oBGA LSH2C	-40		125	°C
T02	Ts	Storage Temperature Range	package oBGA LSH2C	-40		125	°C
Т03	Трк		package oBGA LSH2C tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering TOL (time on label) 8 h;			245 230	°C °C
			Please refer to customer information file No. 7 for details.				

INCREMENTAL PHOTOSENSOR ARRAY

Rev B1, Page 5/8

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.55.5 V, Tj = -40125 °C, unless otherwise state	d
--	---

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device	L		1			
001	VCC	Permissible Supply Voltage		4.5		5.5	V
002	I(VCC)	Supply Current in VCC	no output load, photocurrents within linear op- erating range (no override)		6.5	12	mA
003	Vc()hi	Clamp-Voltage hi at all pins	I() = 4 mA			11	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
Photo	sensors	1	· · · · · · · · · · · · · · · · · · ·				
101	λar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda)max$	400		950	nm
102	λpk	Peak Sensitivity Wavelength			680		nm
103	Aph()	Radiant Sensitive Area of DPSIN, DPCOS, DNSIN, DNCOS	0.8 mm x 0.33 mm		0.264		mm ²
104	Aph()	Radiant Sensitive Area of DPZ, DNZ	1.72 mm x 0.15 mm		0.258		mm ²
105	S(λr)	Spectral Sensitivity	$\lambda_{\text{LED}} = 740 \text{nm}$		0.5		A/W
106	S(λ)max	Maximum Spectral Sensitivity	$\lambda \mathbf{r} = \lambda \mathbf{p} \mathbf{k}$		0.55		A/W
107	E()mx	Irradiance For Maximum Signal Level	$\lambda_{\text{LED}} = 740 \text{ nm}, \text{ Vout() not yet saturated}$	0.15	0.5	0.8	mW/ cm ²
Photo	current Am	olifiers					
201	lph()	Permissible Photocurrent Operating Range		0		280	nA
202	η()r	Photo Sensitivity (light-to-voltage conversion ratio)	$\lambda_{\text{LED}} = 740 \text{nm}$	0.8	1.2	2.0	V/μW
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph()	2.69	4.0	5.46	MΩ
204	TCz	Temperature Coefficient of Transimpedance Gain			-0.12		%/°C
209	ΔZ()pn	Transimpedance Gain Matching Of Paired Amplifiers	P. channel vs. corresponding N. channel	-0.2		0.2	%
210	Δ Vout()pn	Signal Matching	no illumination, any output vs. any output	-35		35	mV
211	Δ Vout()pn	Signal Matching	no illumination, P output vs. corresponding N output	-2.5		2.5	mV
212	fc()hi	Cut-off Frequency (-3 dB)		120	180	280	kHz
213	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV
Signa	I Outputs PS	SIN, NSIN, PCOS, NCOS, PZ					
301	Vout()mx	Permissible Maximum Output Voltage	illumination to E()mxr, linear gain	2.45	2.72	3.02	V
302	Vout()d	Dark Signal Level	no illumination, load 20 k Ω vs. +2 V	600	770	1000	mV
303	Vout()acmx	Maximum Signal Level	Vout()acmx = Vout()mx - Vout()d	1.48	1.96	2.35	V
304	lsc()hi	Short-circuit Current hi	load current to ground	100	420	800	μA
305	lsc()lo	Short-circuit Current lo	load current to IC	250	480	700	μA
306	Ri()	Internal Output Resistance	f= 1 kHz	70	110	180	Ω
Refer	ence Voltage	e NZ					
401	VREF	Reference Voltage	I(VREF) = 0+1.6 mA	600	770	1000	mV
402	dVout()	Load Balancing	I(VREF) = 0+1.6 mA	-10		+10	mV
403	lsc()hi	Short-circuit Current hi	load current to ground	200	420	800	μA
404	lsc()lo	Short-circuit Current lo	load current to IC	2	4.5	10	mA

Rev B1, Page 6/8

APPLICATION HINTS

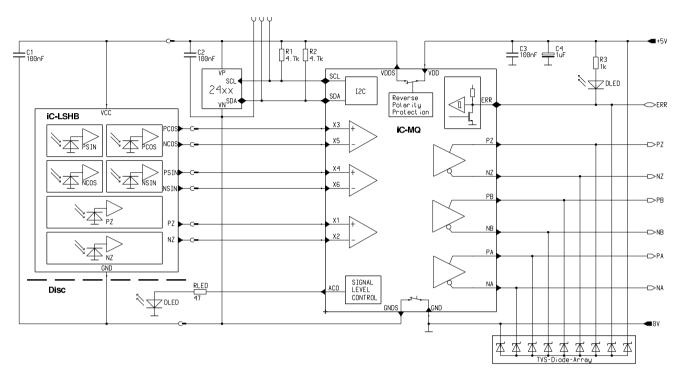


Figure 1: Example of incremental encoder with RS422 output

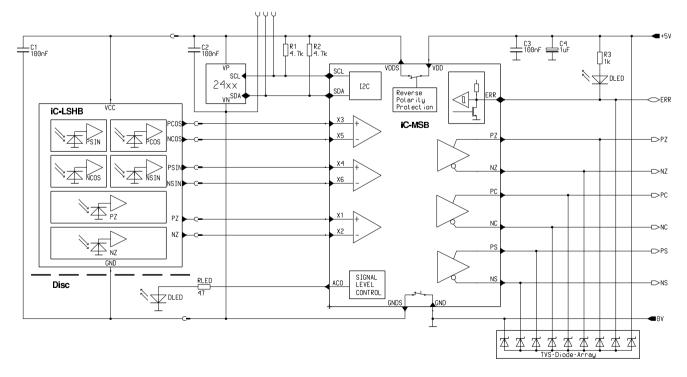


Figure 2: Example of sine encoder with 1 Vpp output

iC-LSHB INCREMENTAL PHOTOSENSOR ARRAY

Rev B1, Page 7/8

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev B1, Page 8/8

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-LSHB	optoBGA 6.2 mm x 5.2 mm optoBGA 6.2 mm x 5.2 mm optoBGA 6.2 mm x 5.2 mm	- reticle 42-1024 reticle 42-4096 Code Disc 1024 PPR, OD/ID Ø42/18 mm, glass Code Disc 4096 PPR, OD/ID Ø42/18 mm, glass	iC-LSHB chip iC-LSHB OBGA LSH2C iC-LSHB OBGA LSH2C-2R iC-LSHB OBGA LSH2C-4R LSHB2S 42-1024 LSHB4S 42-4096

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (61 35) 92 92-0 Fax: +49 (61 35) 92 92-192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners